Gut Bacterial Communities in the Ground Beetle Carabus convexus

Author:

Magura Tibor12ORCID,Mizser Szabolcs1ORCID,Horváth Roland12ORCID,Tóth Mária12,Kozma Ferenc Sándor2,Kádas János3,Lövei Gábor L.24ORCID

Affiliation:

1. Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary

2. HUN-REN–UD Anthropocene Ecology Research Group, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary

3. UD-GenoMed Medical Genomic Technologies Ltd., Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary

4. Flakkebjerg Research Centre, Department of Agroecology, Aarhus University, DK-4200 Slagelse, Denmark

Abstract

Biological interactions, including symbiotic ones, have vital roles in ecological and evolutionary processes. Microbial symbionts in the intestinal tracts, known as the gut microbiome, are especially important because they can fundamentally influence the life history, fitness, and competitiveness of their hosts. Studies on the gut-resident microorganisms of wild animals focus mainly on vertebrates, and studies on species-rich invertebrate taxa, such as ground beetles, are sparse. In fact, even among the species-rich genus Carabus, only the gut microbiome of two Asian species was studied, while results on European species are completely missing. Here, we investigated the gut bacterial microbiome of a widespread European Carabus species, targeting the V3 and V4 regions of the 16S ribosomal RNA genes by next-generation high-throughput sequencing. We identified 1138 different operational taxonomic units assigned to 21 bacterial phyla, 90 families, and 197 genera. Members of the carbohydrate-degrading Prevotellaceae family, previously not detected in ground beetles, were the most abundant in the gut microbiome of the carnivorous C. convexus. Presumably, individuals from the studied wild populations also consume plant materials, especially fruits, and these carbohydrate-degrading bacterial symbionts can facilitate both the consumption and the digestion of these supplementary foods.

Funder

National Research, Development and Innovation Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3