Living on the Edge: Using and Improving Trap Crops for Flea Beetle Management in Small-Scale Cropping Systems

Author:

George David,Port Gordon,Collier Rosemary

Abstract

The use of trap crops to manage pest insects offers an attractive alternative to synthetic pesticides. Trap crops may work particularly well at smaller production scales, being highly amenable where crop diversification and reduction of synthetic inputs are prioritised over yield alone. This paper describes a series of experiments. The first was to demonstrate the potential of turnip rape (Brassica rapa L., var. Pasja) as a trap crop to arrest flea beetles (Phyllotreta spp.) to protect a main crop of cauliflower (Brassica oleracea L., var. Lateman). The subsequent experiments explored two possible approaches to improve the function of the trap crop—either by separating trap and main crop plants spatially, or by introducing companion plants of tomato (Lycopersicon esculentum Mill., cv Amateur) into the main crop. In caged field experiments, feeding damage by flea beetles to crop border plantings of turnip rape far exceeded damage to cauliflower plants placed in the same position, indicating a “trap crop effect”. Neither turnip rape plants nor cauliflower as a border significantly reduced flea beetle damage to main crop cauliflower plants, although the numbers of feeding holes in these plants were lowest where a turnip rape border was used. In similar cages, leaving gaps of 3–6 m of bare soil between turnip rape and cauliflower plants significantly reduced feeding damage to the latter, as compared to when plants were adjacent. The results of a small-scale open field trial showed that a turnip rape trap crop alone reduced flea beetle damage to cauliflower, significantly so later in the season at higher pest pressures, but that addition of tomato companion plants did not improve pest control potential.

Funder

Agricultural and Horticultural Development Board

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3