Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide

Author:

Laudani FrancescaORCID,Campolo OrlandoORCID,Caridi Roberta,Latella Ilaria,Modafferi AntoninoORCID,Palmeri Vincenzo,Sorgonà AgostinoORCID,Zoccali Paolo,Giunti GiuliaORCID

Abstract

Due to its high polyphagy, Aphis gossypii is considered a key pest of many crops, and it can feed on hundreds of plant species belonging to the families Cucurbitaceae, Malvaceae, Solanaceae, Rutaceae, and Asteraceae. The control of this pest mainly relies on synthetic insecticides whose adverse effects on the environment and human health are encouraging researchers to explore innovative, alternative solutions. In this scenario, essential oils (EOs) could play a key role in the development of ecofriendly pesticides. In this study, the development of a citrus peel EO-based nano-formulation and its biological activity against A. gossypii both in the laboratory and field were described and evaluated. The phytotoxicity towards citrus plants was also assessed. The developed nano-insecticide highlighted good aphicidal activity both in the laboratory and field trials, even at moderate EO concentrations. However, the highest tested concentrations (4 and 6% of active ingredient) revealed phytotoxic effects on the photosynthetic apparatus; the side effects need to be carefully accounted for to successfully apply this control tool in field conditions.

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3