Susceptibility of Diaphorina citri to Irradiation with UV-A and UV-B and the Applicability of the Bunsen–Roscoe Reciprocity Law

Author:

Parajuli Sabina1,Beattie George Andrew Charles2,Holford Paul2ORCID,Yang Chuping3,Cen Yijing1

Affiliation:

1. Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China

2. School of Science, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia

3. College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

Populations of Diaphorina citri decline with elevation and, in a study in Bhutan, were rarely found above 1200 m ASL. The impact of ultraviolet (UV) radiation, particularly UV-B, on immature stages of the psyllid was proposed as limiting factor. As no studies have been undertaken on the influences of UV radiation on the development of D. citri, we examined the effects of UV-A and UV-B on different stadia of the psyllid. In addition, compliance with the Bunsen–Roscoe reciprocity law was examined. Irradiation with UV-A marginally reduced egg hatch and the survival times of emerging nymphs. Early instar nymphs were little affected by this waveband, but the survival of adults was reduced at the higher doses used. With UV-B, egg hatch and the survival times of early and late instar nymphs declined in proportion to UV-B dose. A dose of 57.6 kJ m−2 d−1 reduced the survival time of only adult females. Female fecundity was reduced at high UV-A and UV-B doses but increased at low doses. The Bunsen–Roscoe law held true for eggs and early instar nymphs for different durations and irradiances of UV-B. Eggs and nymphs had ED50 values for UV-B lower than the daily fluxes of this wavelength experienced worldwide. Thus, UV-B could be a factor causing the psyllid to be scarce at high elevations.

Funder

Open competition program of ten major Directions of Agricultural science and technology

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3