Functional Identification of Px-fringe and Px-engrailed Genes under Heat Stress in Chlorpyrifos-Resistant and -Susceptible Plutela xylostella (Lepidoptera: Plutellidae)

Author:

Wang Yu,Wang Jingnan,Xia Xiaofeng,Wu Gang

Abstract

In our previous research, the fitness cost of resistance of the diamondback moth (DBM), Plutella xylostella found in insecticide-resistant DBM (Rc-DBM) under heat stress was based on heavier damage to wing veins when compared to insecticide-susceptible DBM (Sm-DBM). To investigate the molecular mechanism of the damage to the veins between Rc- and Sm-DBM, the full-length sequences of two related genes involved in the development of wing veins, fringe (Px-fng) and engrailed (Px-en) of DBM were cloned, and the mRNA expressions of both Px-fng and Px-en were studied. The Px-fng and Px-en cDNA contained 1038 bp and 1152 bp of open reading frames (ORFs), respectively, which encoded a putative protein comprising 345 and 383 amino acids with a calculated molecular weight of 39.59 kDa and 42.69 kDa. Significantly down regulated expressions of Px-fng and Px-en under heat stress were found in pupae and adults of Rc-DBM compared to Sm-DBM, and a result of higher damage to wing veins in Rc-DBM under heat stress. Based on RNAi experiments, significant inhibitions on expressions of Px-fng and Px-en in both Sm-DBM and Rc-DBM were found when the pupae were infected by dsFng or dsEn. Corresponding to these, infections of dsFng or dsEn resulted in significant decrease of eclosion rate and increase malformation rate of DBM. Our results suggest that the higher damage of wing veins in DBM might be related to the heavier inhibitions of Px-fng and Px-en expression, and the Px-fng and Px-en are involved in the development of wings and veins.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3