The MosHouse® Trap: Evaluation of the Efficiency in Trapping Sterile Aedes aegypti Males in Semi-Field Conditions

Author:

Kittayapong PattamapornORCID,Kittayapong Rungrith,Ninphanomchai SuwannapaORCID,Limohpasmanee Wanitch

Abstract

Arbovirus diseases, such as dengue, chikungunya, and Zika, are important public health problems. Controlling the major vector, Aedes aegypti, is the only approach to suppressing these diseases. The surveillance of this mosquito species needs effective collecting methods. In this study, a simple MosHouse sticky trap was evaluated in a semi-field condition. Our results demonstrated the efficiency of this trap in collecting Ae. aegypti males, and no significant difference (p > 0.05) in the numbers of males was detected when compared with the widely used BG- Sentinel trap. However, there were significantly lower numbers of females (p < 0.05) collected using the MosHouse trap when compared to the BG-Sentinel trap. We also found a significant difference (p < 0.05) in the collected numbers between irradiated and non-irradiated males. More irradiated males were collected in the MosHouse traps. The improvement of male collection was achieved with the addition of a sugar stick and sticky flags. Significantly higher numbers of males were collected in the MosHouse trap with sticky flags compared to the original one when they were released independently of females, but both were collected in higher numbers when they were released together (p < 0.05). In conclusion, our experiments demonstrated that the MosHouse trap could sample Ae. aegypti, especially males, as efficiently as the established BG-Sentinel trap, while the cost was more than 50 times lower, showing the potential of the MosHouse trap for improved Ae. aegypti male and female surveillance with very large numbers of traps at affordable costs. In addition, significantly (p < 0.001) increased male sampling was achieved by adding an external sticky flag on the MosHouse trap, providing an avenue for further development of the novel male-trapping strategy.

Funder

IAEA/CRP/44022

UNICEF/UNDP/World Bank/WHO Special Programme

Mahidol University

Publisher

MDPI AG

Subject

Insect Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abordagem One Health (saúde única) e a dengue;Vigilância Sanitária em Debate;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3