Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.)

Author:

Pan Xue,Pei Yanfang,Zhang Cuici,Huang Yaling,Chen Ling,Wei Liqiong,Li Chuanren,Dong XiaolinORCID,Chen Xiang

Abstract

Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.

Funder

the National Natural Science Foundation of China

Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3