How Biodiversity, Climate and Landscape Drive Functional Redundancy of British Butterflies

Author:

Lazarina Maria1,Michailidou Danai-Eleni1ORCID,Tsianou Mariana1ORCID,Kallimanis Athanasios S.1ORCID

Affiliation:

1. Department of Ecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Biodiversity promotes the functioning of ecosystems, and functional redundancy safeguards this functioning against environmental changes. However, what drives functional redundancy remains unclear. We analyzed taxonomic diversity, functional diversity (richness and β-diversity) and functional redundancy patterns of British butterflies. We explored the effect of temperature and landscape-related variables on richness and redundancy using generalized additive models, and on β-diversity using generalized dissimilarity models. The species richness-functional richness relationship was saturating, indicating functional redundancy in species-rich communities. Assemblages did not deviate from random expectations regarding functional richness. Temperature exerted a significant effect on all diversity aspects and on redundancy, with the latter relationship being unimodal. Landscape-related variables played a role in driving observed patterns. Although taxonomic and functional β-diversity were highly congruent, the model of taxonomic β-diversity explained more deviance than the model of functional β-diversity did. Species-rich butterfly assemblages exhibited functional redundancy. Climate- and landscape-related variables emerged as significant drivers of diversity and redundancy. Τaxonomic β-diversity was more strongly associated with the environmental gradient, while functional β-diversity was driven more strongly by stochasticity. Temperature promoted species richness and β-diversity, but warmer areas exhibited lower levels of functional redundancy. This might be related to the land uses prevailing in warmer areas (e.g., agricultural intensification).

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Insect Science

Reference92 articles.

1. Scientists’ warning on affluence;Wiedmann;Nat. Commun.,2020

2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. (2021). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., and Shukla, P.R. (2022). Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

4. Díaz, S.M., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., and Butchart, S. (2019). The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.

5. Biodiversity and the human past: Lessons for conservation biology;Millhauser;Biol. Conserv.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3