Toxicity and Behavior-Altering Effects of Three Nanomaterials on Red Imported Fire Ants and Their Effectiveness in Combination with Indoxacarb

Author:

Ma Zewen1,Fu Jiantao12,Zhang Yunfei1,Wang Lanying1,Luo Yanping1ORCID

Affiliation:

1. School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

2. Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China

Abstract

The red imported fire ant (Solenopsis invicta Buren) is one of the 100 worst invasive alien species in the world. At present, the control of red imported fire ants is still mainly based on chemical control, and the most commonly used is indoxacarb bait. In this study, the contact and feeding toxicity of 16 kinds of nanomaterials to workers, larvae, and reproductive ants were evaluated after 24 h, 48 h, and 72 h. The results showed that the mortality of diatomite, Silica (raspberry-shaped), and multi-walled carbon nanotubes among workers reached 98.67%, 97.33%, and 68%, respectively, after contact treatment of 72 h. The mortality of both larval and reproductive ants was less than 20% after 72 h of treatment. All mortality rates in the fed treatment group were below 20% after 72 h. Subsequently, we evaluated the digging, corpse-removal, and foraging behaviors of workers after feeding with diatomite, Silica (raspberry-shaped), and multi-walled carbon nanotubes for 24 h, which yielded inhibitory effects on the behavior of red imported fire ants. The most effective was diatomite, which dramatically decreased the number of workers that dug, extended the time needed for worker ant corpse removal and foraging activities, decreased the number of workers that foraged, and decreased the weight of the food carried by the workers. In addition, we also evaluated the contact and feeding toxicity of these three nanomaterials in combination with indoxacarb on red imported fire ants. According to contact toxicity, after 12 h of contact treatment, the death rate among the red imported fire ants exposed to the three materials combined with indoxacarb reached more than 97%. After 72 h of exposure treatment, the mortality rate of larvae was more than 73% when the nanomaterial content was above 1% and 83% when the diatomite content was 0.5%, which was significantly higher than the 50% recorded in the indoxacarb control group. After 72 h of feeding treatment, the mortality of diatomite, Silica (raspberry-shaped), and multi-walled carbon nanotubes combined with indoxacarb reached 92%, 87%, and 98%, respectively. The death rates of the three kinds of composite ants reached 97%, 67%, and 87%, respectively. The three kinds of composite food had significant inhibitory effects on the behavior of workers, and the trend was largely consistent with the effect of nanomaterials alone. This study provides technical support for the application of nanomaterials in red imported fire ant control.

Funder

Hainan Province Science and technology species fund

GDAS Project of Science and Technology Development

China Agriculture Research System of Sugar

Publisher

MDPI AG

Subject

Insect Science

Reference49 articles.

1. Fumigant toxicity and behavioral alterations of six plant essential oils against the red fire ant (Solenopsis invicta Buren);Fu;Environ. Sci. Pollut. R,2023

2. Global Invasion History of the Fire Ant Solenopsis invicta;Ascunce;Science,2011

3. Impacts of changing climate on the distribution of Solenopsis invicta Buren in Mainland China: Exposed urban population distribution and suitable habitat change;Wang;Ecol. Indic.,2022

4. Toxicities comparison of rotenone and acetone extract of Tephrosia vogelii and Derris trifoliate against Solenopsis invicta;Cheng;Sociobiology,2016

5. Impact of the invasion of the imported fire ant;Vinson;Insect Sci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3