Identifying Molecular-Based Trophic Interactions as a Resource for Advanced Integrated Pest Management

Author:

Schmidt Jason M.,Acebes-Doria AngelitaORCID,Blaauw Brett,Kheirodin ArashORCID,Pandey Swikriti,Lennon Kylie,Kaldor Amos D.,Toledo Pedro F. S.ORCID,Grabarczyk Erin E.ORCID

Abstract

Biodiversity is an essential attribute of sustainable agroecosystems. Diverse arthropod communities deliver multiple ecosystem services, such as biological control, which are the core of integrated pest management programs. The molecular analysis of arthropod diets has emerged as a new tool to monitor and help predict the outcomes of management on the functioning of arthropod communities. Here, we briefly review the recent molecular analysis of predators and parasitoids in agricultural environments. We focus on the developments of molecular gut content analysis (MGCA) implemented to unravel the function of community members, and their roles in biological control. We examine the agricultural systems in which this tool has been applied, and at what ecological scales. Additionally, we review the use of MGCA to uncover vertebrate roles in pest management, which commonly receives less attention. Applying MGCA to understand agricultural food webs is likely to provide an indicator of how management strategies either improve food web properties (i.e., enhanced biological control), or adversely impact them.

Funder

USDA

USDA-NIFA Multistate Hatch Project

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3