Drones Do Not Drift between Nests in a Wild Population of Apis cerana

Author:

Hagan Thomas1ORCID,Lim Julianne1,Gloag Rosalyn1

Affiliation:

1. Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia

Abstract

The modes through which individuals disperse prior to reproduction has important consequences for gene flow in populations. In honey bees (Apis sp.), drones (males) reproduce within a short flight range of their natal nest, leaving and returning each afternoon within a narrow mating window. Drones are assumed to return to their natal nests as they depend on workers to feed them. However, in apiaries, drones are reported to regularly make navigation errors and return to a non-natal nest, where they are accepted and fed by unrelated workers. If such a “drone drift” occurred in wild populations, it could facilitate some further degree of dispersal for males, particularly if drones drift into host nests some distance away from their natal nest. Here, we investigated whether drone drift occurs in an invasive population of the Asian honey bee (Apis cerana). Based on the genotypes of 1462 drones from 19 colonies, we found only a single drone that could be considered a candidate drifter (~0.07%). In three other colonies, drones whose genotypes differed from the inferred queen were best explained by recent queen turnover or worker-laying. We concluded that drone drift in this population is low at best, and A. cerana drones either rarely make navigation errors in wild populations or are not accepted into foreign nests when they do so. We therefore confirm that drone dispersal distance is limited to the distance of daily drone flights from natal nests, a key assumption of both colony density estimates based on sampling of drone congregation areas and population genetic models of gene flow in honey bees.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Insect Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3