Aphid Recognition and Counting Based on an Improved YOLOv5 Algorithm in a Climate Chamber Environment

Author:

Li Xiaoyin1,Wang Lixing1,Miao Hong1,Zhang Shanwen1

Affiliation:

1. College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China

Abstract

Due to changes in light intensity, varying degrees of aphid aggregation, and small scales in the climate chamber environment, accurately identifying and counting aphids remains a challenge. In this paper, an improved YOLOv5 aphid detection model based on CNN is proposed to address aphid recognition and counting. First, to reduce the overfitting problem of insufficient data, the proposed YOLOv5 model uses an image enhancement method combining Mosaic and GridMask to expand the aphid dataset. Second, a convolutional block attention mechanism (CBAM) is proposed in the backbone layer to improve the recognition accuracy of aphid small targets. Subsequently, the feature fusion method of bi-directional feature pyramid network (BiFPN) is employed to enhance the YOLOv5 neck, further improving the recognition accuracy and speed of aphids; in addition, a Transformer structure is introduced in front of the detection head to investigate the impact of aphid aggregation and light intensity on recognition accuracy. Experiments have shown that, through the fusion of the proposed methods, the model recognition accuracy and recall rate can reach 99.1%, the value mAP@0.5 can reach 99.3%, and the inference time can reach 9.4 ms, which is significantly better than other YOLO series networks. Moreover, it has strong robustness in actual recognition tasks and can provide a reference for pest prevention and control in climate chambers.

Funder

Jiangsu Provincial Key Research and Development Program Modern Agriculture

Publisher

MDPI AG

Subject

Insect Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3