Lethal and Sublethal Effects of Cyantraniliprole on the Biology and Metabolic Enzyme Activities of Two Lepidopteran Pests, Spodoptera littoralis and Agrotis ipsilon, and A Generalist Predator, Chrysoperla carnea (Neuroptera: Chrysopidae)

Author:

Awad Mona1ORCID,El Kenawy Ahmed H.2,Alfuhaid Nawal AbdulAziz3,Ibrahim El-Desoky S.1,Jósvai Júlia Katalin4ORCID,Fónagy Adrien4ORCID,Moustafa Moataz A. M.1ORCID

Affiliation:

1. Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

2. Biological Control Department, Agricultural Research Centre, Giza 12619, Egypt

3. Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

4. Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, 1022 Budapest, Hungary

Abstract

Cyantraniliprole is a novel anthranilic diamide insecticide registered for controlling chewing and sucking insect pests. Here, the lethal and sublethal effects of this insecticide on two destructive lepidopteran pests, Spodoptera littoralis Boisduval and Agrotis ipsilon Hufnagel, were evaluated. Because the effects of novel insecticides on beneficial and non-target arthropods must be considered, the impact of cyantraniliprole on a generalist biological control agent, Chrysoperla carnea [Stephens 1836], were also examined. Overall, our study revealed that cyantraniliprole was more toxic to A. ipsilon than to S. littoralis. Moreover, the LC15 and LC50 of the insecticide significantly prolonged the duration of the larval and pupal stages and induced enzymatic detoxification activity in both species. Treatment of the second-instar larvae of C. carnea with the recommended concentration of cyantraniliprole (0.75 mg/L) doubled the mortality rates and resulted in a slight negative effect on the biology and detoxification enzymes of C. carnea. Our results indicate that both sublethal and lethal concentrations of cyantraniliprole can successfully suppress S. littoralis and A. ipsilon populations. They also suggest that C. carnea, as a generalist predator, is compatible with cyantraniliprole under the modelled realistic field conditions. In future investigations, insights into the effects of cyantraniliprole on S. littoralis, A. ipsilon, and C. carnea under field conditions will be required to appropriately validate our results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3