Immune Defense Mechanism of Reticulitermes chinensis Snyder (Blattodea: Isoptera) against Serratia marcescens Bizio

Author:

Luo Jian,Wang Zhiqiang,Tang Fang,Feng Kai

Abstract

Reticulitermes chinensis Snyder is an important pest species in China. Serratia marcescens Bizio (SM1) is a potent biological bacterium. In our lab, we found that SM1 can kill R. chinensis. To date, the interaction between R. chinensis and SM1 has not been studied. Here, we explored immune responses of R. chinensis against SM1 using transcriptome sequencing. To elucidate immune-related genes, we identified 126,153 unigenes from R. chinensis. In total, 178 immune-related differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that many cellular responses were enriched in the top 20 terms. Then, we systematically analyzed several cellular immune pathways involved in the response of R. chinensis to SM1, including phagocytosis, autophagy, and endocytosis pathways. Furthermore, the expression profiles of the cellular immune-related genes were assessed using quantitative reverse-transcription PCR, and the expression levels of the selected genes were upregulated. Further results revealed SM1-mediated activation of humoral immune responses genes, including Toll, IMD, and melanization pathways, which suggested the involvement of humoral immune responses in the defense against SM1. This research elucidated the mechanisms underlying the immune defense of R. chinensis against SM1, providing a solid theoretical basis for exploiting new immune suppressive agents to control R. chinensis. Moreover, this study will facilitate the better control of R. chinensis using SM1.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3