Activity Patterns, Population Dynamics, and Spatial Distribution of the Stick Tea Thrips, Dendrothrips minowai, in Tea Plantations

Author:

Zhang Fengge12,Cai Xiaoming13,Jin Limeng4,Yang Guojun5,Luo Zongxiu13,Bian Lei13,Li Zhaoqun13,Fu Nanxia13ORCID,Chen Zongmao13,Wang Guochang2,Xiu Chunli13ORCID

Affiliation:

1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

2. School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China

3. Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China

4. Shaoxing Royal Tea Village Co., Ltd., Shaoxing 312000, China

5. Hangzhou Fuhaitang Tea Ecological Technology Co., Ltd., Hangzhou 310024, China

Abstract

The stick tea thrips, D. minowai Priesner (Thysanoptera: Thripidae), is one of the most economically significant thrips pests of tea (Camellia sinensis (L.) O. Ktze.) in China. Here, we sampled D. minowai in tea plantations from 2019 to 2022 to characterize its activity patterns, population dynamics, and spatial distribution. A large proportion of D. minowai individuals were caught in traps placed at heights ranging from 5 cm below to 25 cm above the position of tender leaves at the top of the tea plant, and the greatest number of individuals were captured at a height of 10 cm from the position of tender leaves at the top of the tea plant. Thrips were most abundant from 10:00 to 16:00 h in the spring and from 06:00 to 10:00 h and from 16:00 to 20:00 h on sunny days in the summer. The spatial distribution of D. minowai females and nymphs was aggregated on leaves according to Taylor’s power law (females: R2 = 0.92, b = 1.69 > 1; nymphs: R2 = 0.91, b = 2.29 > 1) and Lloyd’s patchiness index (females and nymphs: C > 1, Ca > 0, I > 0, M*/m > 1). The D. minowai population was dominated by females, and male density increased in June. Adult thrips overwintered on the bottom leaves, and they were most abundant from April to June and from August to October. Our findings will aid efforts to control D. minowai populations.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3