Influence of Zwitterionic Buffer Effects with Thermal Modification Treatments of Wood on Symbiotic Protists in Reticulitermes grassei Clément

Author:

Duarte SóniaORCID,Nunes LinaORCID,Kržišnik DavorORCID,Humar MihaORCID,Jones DennisORCID

Abstract

The majority of thermal modification processes are at temperatures greater than 180 °C, resulting in a product with some properties enhanced and some diminished (e.g., mechanical properties). However, the durability of thermally modified wood to termite attack is recognised as low. Recent attempts at combining thermal modification with chemical modification, either prior to or directly after the thermal process, are promising. Buffers, although not influencing the reaction systems, may interact on exposure to certain conditions, potentially acting as promoters of biological changes. In this study, two zwitterionic buffers, bicine and tricine, chosen for their potential to form Maillard-type products with fragmented hemicelluloses/volatiles, were assessed with and without thermal modification for two wood species (spruce and beech), with subsequent evaluation of their effect against subterranean termites (Reticulitermes grassei Clément) and their symbiotic protists. The effect of the wood treatments on termites and their symbionts was visible after four weeks, especially for spruce treated with tricine and bicine and heat treatment (bicine HT), and for beech treated with bicine and bicine and heat treatment (bicine HT). The chemical behaviour of these substances should be further investigated when in contact with wood and also after heat treatment. This is the first study evaluating the effect of potential Maillard reactions with zwitterionic buffers on subterranean termite symbiotic fauna.

Funder

project "Advanced research supporting the forestry and wood-processing sector’s adaptation to global change and the 4th industrial revolution", OP RDE

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3