Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster

Author:

Hu Die12,Li Wanning2,Wang Ju12,Peng Yaqi12,Yun Yueli2,Peng Yu1ORCID

Affiliation:

1. Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China

2. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China

Abstract

It was reported that temperature affects the distribution of Wolbachia in the host, but only a few papers reported the effect of the interaction between high temperature and Wolbachia on the biological characteristic of the host. Here, we set four treatment Drosophila melanogaster groups: Wolbachia-infected flies in 25 °C (W+M), Wolbachia-infected flies in 31 °C (W+H), Wolbachia-uninfected flies in 25 °C (W-M), Wolbachia-uninfected flies in 31 °C (W-H), and detected the interaction effect of temperature and Wolbachia infection on the biological characteristic of D. melanogaster in F1, F2 and F3 generations. We found that both temperature and Wolbachia infection had significant effects on the development and survival rate of D. melanogaster. High temperature and Wolbachia infection had interaction effect on hatching rate, developmental durations, emergence rate, body weight and body length of F1, F2 and F3 flies, and the interaction effect also existed on oviposition amount of F3 flies, and on pupation rate of F2 and F3 flies. High temperature stress reduced the Wolbachia vertical transmission efficiency between generations. These results indicated that high temperature stress and Wolbachia infection had negative effects on the morphological development of D. melanogaster.

Funder

Wuhan Science and Technology Bureau

Special Foundation for National Science and Technology Basic Research Program of China

Publisher

MDPI AG

Subject

Insect Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3