Functional Characterization of Pheromone Receptors in the Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae)

Author:

Zhang Yu1ORCID,Han Hai-Bin1,Li Yan-Yan2,Xu Lin-Bo1,Hao Li-Fen1,Wang Hui1,Wang Wen-He3,Gao Shu-Jing1,Lin Ke-Jian1

Affiliation:

1. Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China

2. Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China

3. Forest Farm of Baichengzi of Alukeerqin Banner, Chifeng 024000, China

Abstract

Lepidopteran insects mainly rely on sex pheromones to complete sexual communications. Pheromone receptors (PRs) are expressed on the olfactory receptor neurons (ORNs) of the sensilla trichodea and play an essential role in sexual communication. Despite extensive investigations into the mechanisms of peripheral recognition of sex pheromones in Lepidoptera, knowledge about these mechanisms in L. sticticalis remains limited. In this study, five candidate LstiPRs were analyzed in a phylogenetic tree with those of other Lepidopteran insects. Electroantennography (EAG) assays showed that the major sex pheromone component E11-14:OAc elicited a stronger antennal response than other compounds in male moths. Moreover, two types of neurons in sensilla trichodea were classified by single sensillum recordings, of which the “a” neuron specifically responded to E11-14:OAc. Five candidate PRs were functionally assayed by the heterologous expression system of Xenopus oocytes, and LstiPR2 responded to the major sex pheromone E11-14:OAc. Our findings suggest that LstiPR2 is a PR sensitive to L. sticticalis’s major sex pheromone compound, E11-14:OAc. Furthermore, this study offers valuable insights into the sexual communication behavior of L. sticticalis, forming a foundation for further analysis of the species’ central nervous system.

Funder

Central Government to Guide Local Science and Technology Development Fund Projects of China

Natural Science Foundation of Inner Mongolia

the special fund for basic scientific research business of central public welfare scientific research institutes

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3