Abstract
Among anthropogenic environmental risks, air pollution has the potential to impact animal and plant physiology, as well as their interactions and the long-term survival of populations, which could threaten the functioning of ecosystems. What is especially alarming is that the concentration of tropospheric ozone (O3) has dramatically increased since pre-industrial times. However, the direct effects of O3 on the behavior of pollinators themselves have not been investigated so far even though insect behavior is key to their ecological interactions, which underpin the stability of ecological networks responsible for species biodiversity in ecosystems. In this study, we aim to determine the potential effects of O3 episodes at different field-realistic concentrations (0, 40, 80, 120, and 200 ppb for 60 min) on the behavior of the fig wasp Blastophaga psenes by monitoring exposed individuals hourly for 5 h after exposure. We found that ozone episodes induced major changes in insect behavior, which were already significant at 80 ppb with individuals displaying abnormal motility. The tracking over time clearly showed that exposed individuals might only have a reduced chance of recovery, with a decreasing proportion of active fig wasps despite the cessation of an O3 episode. These findings illustrate that O3 episodes can affect pollinator behavior, which may have detrimental implications for pollination systems. It is, therefore, of importance to assess the effects of O3 on insect behavior in order to predict how it could modify ecological interactions and species biodiversity in ecosystems.
Funder
French Agency for Food, Environmental and Occupational Health & Safety
Agence Nationale de la Recherche
International Research Project
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献