Author:
Kong Hailong,Liu Zhonglin,Yang Pingjun,Yuan Lin,Jing Wanghui,Dong Chuanlei,Zheng Minyuan,Tian Zhen,Hou Qiuli,Zhu Shude
Abstract
It has been reported that some phase-polyphenic insects from high-density conditions are more resistant to pathogens than those from low-density conditions. This phenomenon is termed “density-dependent prophylaxis” (DDP). However, whether non phase-polyphenic insects exhibit DDP has rarely been elucidated. The diamondback moth (DBM), Plutella xylostella, one of the most destructive insect pests affecting cruciferous crops, is non phase-polyphenic. In this study, the resistance of DBM larvae to P. xylostella granulosis virus (Plxy GV) and their immune response to the virus when reared at densities of 1, 2, 5, 10, 15, and 20 larvae per Petri dish were investigated under laboratory conditions. Compared with larvae reared at lower densities, larvae reared at moderate density showed a significantly higher survival rate, but the survival rate significantly decreased with further increases in rearing density. Furthermore, the phenoloxidase, lysozyme and antibacterial activity and total hemocyte count in the hemolymph of the larvae, regardless of whether they were challenged with the virus, from different larval densities corresponded to the observed differences in resistance to Plxy GV. These results demonstrated that P. xylostella larvae exhibited DDP within a certain limited density. This study may help to elucidate the biocontrol effect of different density populations of P. xylostella by granulosis virus and guide improvements in future management strategy.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献