Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana

Author:

Liu Chang12ORCID,Liu Zhilong1ORCID,Zhang Yihan1,Song Xuan1,Huang Wenguang3,Zhang Rong2

Affiliation:

1. College of Plant Protection, China Agricultural University, Beijing 100193, China

2. Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China

3. Grassland Workstation of Ningxia, Yinchuan 750002, China

Abstract

Plant essential oils, as biological pesticides, have been reviewed from several perspectives and play a key role in chemical ecology. However, plant essential oils show rapid degradation and vulnerability during actual usage. In this study, we conducted a detailed analysis of the compounds present in the essential oils of A. stechmanniana using gas chromatography–mass spectrometry (GC-MS). The results showed seventeen terpenoid compounds in the A. stechmanniana oil, with four major terpenoid compounds, i.e., eucalyptol (15.84%), (+)-2-Bornanone (16.92%), 1-(1,2,3-Trimethyl-cyclopent-2-enyl)-ethanone (25.63%), and (-)-Spathulenol (16.38%), in addition to an amount of the other terpenoid compounds (25.26%). Indoor toxicity assays were used to evaluate the insecticidal activity of Artemisia stechmanniana essential oil against Aphis gossypii, Frankliniella occidentalis, and Bactericera gobica in Lycium barbarum. The LC50/LD50 values of A. stechmanniana essential oils against A. gossypii, F. occidentalis, and B. gobica were 5.39 mg/mL, 0.34 mg/L, and 1.40 μg/insect, respectively, all of which were highly efficient compared with azadirachtin essential oil. Interestingly, A. stechmanniana essential oil embedded in β-cyclodextrin (microencapsule) remained for only 21 days, whereas pure essential oils remained for only 5 days. A field efficacy assay with the A. stechmanniana microencapsule (AM) and doses at three concentrations was conducted in Lycium barbarum, revealing that the insecticidal activities of AM showed high efficiency, maintained a significant control efficacy at all concentrations tested, and remained for 21 days. Our study identified terpenoid compounds from untapped Artemisia plants and designed a novel method against pests using a new biopesticide on L. barbarum.

Funder

Key Research and Development Projects in Ningxia Hui Autonomous Region

Ningxia Natural Fund Project

Publisher

MDPI AG

Subject

Insect Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3