Density, Temperature, and Comingled Species Affect Fitness within Carrion Communities: Coexistence in Phormia regina and Lucilia sericata (Diptera: Calliphoridae)

Author:

Okpara Patricia1,VanLaerhoven Sherah1

Affiliation:

1. Department of Integrative Biology, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada

Abstract

Blow fly (Diptera: Calliphoridae) interactions vary between competition and facilitation. Female blow flies engage in aggregated egg-laying, resulting in larval feeding masses differing in density and species composition. Numerous species are abundant within the same season, and some oviposit near or directly on eggs of other species, modifying their oviposition location choice depending on the presence or absence of other species. The ability to coexist on carrion, a temporary resource, was successfully attributed to resource, spatial, and temporal heterogeneity. Despite these broad categorizations, the specific mechanisms of coexistence within blow fly communities require further investigation. This study investigates variation in temperature and larval density as potential mechanisms of coexistence between two forensically important blow fly species: Lucilia sericata Meigen and Phormia regina Meigen (Diptera: Calliphoridae). Larval density, species ratio mix, and ambient temperature during development were manipulated in the presence of conspecifics and heterospecifics in the laboratory, and the fitness of each species was measured. In heterospecific treatments, the survival and body size of P. regina increased even at high ambient temperatures. In contrast, the survival of L. sericata remained unaffected by density or presence of heterospecifics, whereas body size increased in L. sericata-dominated heterospecific treatments depending on temperature and density. The negative effects of density were observed at high ambient temperatures, suggesting that density impacts are a function of ambient temperature. Overall, species coexistence was dependent on temperature, which mediated the outcome of species interactions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Insect Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3