Abstract
Cacopsylla pyri (L.) (Hemiptera: Psyllidae) is a key pest of pear orchards in Spain. The large number of insecticide treatments necessary for control may be an important contributor to the emergence of resistance. Laboratory toxicity and biochemical assays are necessary to validate the existence of insecticide resistance and establish the underlying mechanisms. All the methodologies developed to evaluate enzyme activity in C. pyri to date have incorporated “pools” of adults to detect minimum activity ranges. In this study, we determined the optimal working conditions for evaluation of the activities of esterase, glutathione S-transferase and NADPH-cytochrome P450 reductase in individual insects via colorimetric methods using a microplate reader. The main factors affecting enzymatic analysis activity, such as enzyme source and substrate concentration, filter wavelength, buffer pH, reaction time and additives, were evaluated for optimization. Determining the frequency of resistant individuals within a population could be used as an indicator for the evolution of insecticide resistance over time. Two laboratory strains, one of them selected with cypermethrin, and two field populations were analyzed for this purpose. The data obtained revealed high values and great variation in the activity ranges of esterase (EST) in the insecticide-selected population as well as in the field populations validating the applied methodology.
Funder
Ministerio de Ciencia e Innovación
Reference66 articles.
1. http://www.cabi.org/dmpp/
2. La biologie du psylle du Poirier;Atger,1982
3. Peral: Control Integrado de Plagas y Enfermedades;García de Otazo,1992
4. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively
5. Le dépérissement du poirier ou “Pear Decline”;Lemoine;Phytoma Défense Végétaux,1998
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献