Abstract
Insect immunity defends against the virulence of various entomopathogens, including Bacillus thuringiensis (Bt). This study tested a hypothesis that any suppression of immune responses enhances Bt virulence. In a previous study, the entomopathogenic bacterium, Xenorhabdus hominickii (Xh), was shown to produce secondary metabolites to suppress insect immune responses. Indeed, the addition of Xh culture broth (XhE) significantly enhanced the insecticidal activity of Bt against S. exigua. To analyze the virulence enhanced by the addition of Xh metabolites, four bacterial secondary metabolites were individually added to the Bt treatment. Each metabolite significantly enhanced the Bt insecticidal activity, along with significant suppression of the induced immune responses. A bacterial mixture was prepared by adding freeze-dried XhE to Bt spores, and the optimal mixture ratio to kill the insects was determined. The formulated bacterial mixture was applied to S. exigua larvae infesting Welsh onions in a greenhouse and showed enhanced control efficacy compared to Bt alone. The bacterial mixture was also effective in controlling other Spodopteran species such as S. litura and S. frugiperda but not other insect genera or orders. This suggests that Bt+XhE can effectively control Spodoptera-associated pests by suppressing the immune defenses.
Funder
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献