Dispersal Capabilities Do Not Parallel Ecology and Cryptic Speciation in European Cheliferidae Pseudoscorpions (Pseudoscorpiones: Cheliferidae)

Author:

Just Pavel1,Šťáhlavský František1,Bogusch Petr2ORCID,Astapenková Alena2,Opatova Vera1ORCID

Affiliation:

1. Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague, Czech Republic

2. Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, CZ-500 03 Hradec Králové, Czech Republic

Abstract

The ability to disperse has continually shaped both the distribution and diversification of biota, and it affects the survival of the species with respect to wide-ranging habitat loss. As a response, organisms unable to spread by their own means often developed surrogate dispersal strategies. Pseudoscorpions possess small body sizes and cannot actively disperse over large distances and geographic barriers; therefore, they have adopted other ecological strategies. They are either sedentary and remain confined to stable environments or passively disperse via phoresy and are capable of inhabiting a wide variety of habitats, including temporary ones. In this paper, we use barcoding data to investigate the genetic diversity of four widely distributed and relatively morphologically uniform Cheliferidae genera Chelifer, Dactylochelifer, Rhacochelifer and Hysterochelifer. We aim to (i) test whether the genera harbor cryptic diversity and (ii) evaluate whether the genetic structure of the species parallels their dispersal capabilities and habitat preferences (i.e., ecological strategies). In general, we uncovered independent lineages within all analyzed genera, which indicates their need for a thorough and integrative taxonomic revision. More specifically, we detected a varying degree of genetic structuring among the lineages. Known phoretic species, as well as some species and delimited lineages that are not known to use this manner of dispersal, showed a complete lack of geographical structure and shared haplotypes over large distances, while other taxa had restricted distributions. We argue that genetic structure can be used as a proxy to evaluate species’ dispersal manner and efficacy. Our results also suggest that taxa inhabiting stable environments might use phoresy for their dispersal.

Funder

Grant Agency of Charles University

Ministry of Education, Youth and Sports of the Czech Republic

Charles University Research Centre program

Specific Research Project of University of Hradec Kralove

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3