Experimental Investigation and Modeling of Damage Accumulation of EN-AW 2024 Aluminum Alloy under Creep Condition at Elevated Temperature

Author:

Tomczyk Adam,Seweryn Andrzej

Abstract

The paper is focused on creep-rupture tests of samples made of the 2024 alloy in the T3511 temper under uniaxial tensile stress conditions. The basic characteristics of the material at the temperatures of 100, 200 and 300 °C were determined, such as the Young’s modulus E, yield point σy, ultimate tensile strength σc and parameters K and n of the Ramberg–Osgood equation. Creep tests were performed for several different levels of nominal axial stress (load) at each temperature. It was observed that in the process of creep to failure at 200 and 300 °C, as the stress decreases, the creep time increases and, at the same time, the strain at rupture increases. However, such a regularity is maintained until a certain transition stress value σt is reached. Reducing the stress below this value results in a decreased value of the strain at rupture. A simple model of creep damage accumulation was proposed for the stress range above the transient value. In this model, the increase in the isotropic damage state variable was made dependent on the value of axial stress and the increase in plastic axial strain. Using the results of experimental creep-rupture tests and the failure condition, the parameters of the proposed model were determined. The surface of fractures obtained in the creep tests with the use of SEM technology was also analyzed.

Funder

Narodowe Centrum Nauki

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3