Developmental Dynamics and Driving Factors of Understory Vegetation: A Case Study of Three Typical Plantations in the Loess Plateau of China

Author:

Zhang Hengshuo12,Jiao Xuehui3,Zha Tonggang24,Lv Xizhi1,Ni Yongxin1,Zhang Qiufen1,Wang Jianwei1ORCID,Ma Li1

Affiliation:

1. Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou 450003, China

2. School of Soil and Water Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China

3. Zhengzhou Institute of Agricultural and Forestry Science, Zhengzhou 450015, China

4. Jixian National Forest Ecosystem Research Network Station, CNERN, Beijing Forestry University, Beijing 100083, China

Abstract

Understory vegetation is one of the most important links for improving forest biodiversity, and its restoration is conducive to sustainable forest development, energy flow, and nutrient cycling. However, little is known about the developmental dynamics and main driving factors of the long-time series coverage, biomass, diversity, and species composition of plantation understory vegetation. In a case study of three typical plantations, with a natural secondary forest as reference in the Loess Plateau of China, we collected understory vegetation from a Robinia pseudoacacia Linn. deciduous broad-leaved plantation, Pinus tabulaeformis Carr. evergreen coniferous plantation, and mixed plantation with an age span of 10 to 50 years. (1) The understory plantation coverage and biomass results of stands with different ages showed the R. pseudoacacia plantation to be significantly higher than the P. tabulaeformis plantation, and the species diversity of the P. tabulaeformis plantation changed the most with the stand age. However, the growth resource imbalance, and drastic changes in the stands’ environment caused by excessive intraspecific competition in the early stage of the P. tabulaeformis plantation vegetation restoration, are the main reasons that make the species diversity of undergrowth vegetation of P. tabulaeformis plantation lower than that of other stand types. (2) The understory species composition of the plantations revealed their degree of community stability. Compared to the R. pseudoacacia plantation and P. tabulaeformis plantation, the mixed plantation had higher stability, and its species composition closely resembled a natural secondary forest. The community stability of the P. tabulaeformis plantation was the lowest because it had the lowest coverage, biomass, and species diversity of understory vegetation. However, the understory species composition of the three plantation types converged, which was due to atypical species contribution. (3) The dynamic changes of canopy and soil nutrients were the main driving factors affecting the R. pseudoacacia plantation understory vegetation species composition. Stand density and elevation limited the understory vegetation communities of P. tabulaeformis plantation restoration. Soil bulk density is the key factor affecting understory vegetation in mixed plantations, and this effect weakens with the stand age. In future studies, the focus should be on the converged action and further development trend of atypical species, choosing an appropriate recovery strategy (active or passive), and providing more possibilities for the intensive management of vegetation under different plantations.

Funder

National Natural Sciences Foundation of China

National Natural Sciences Foundation of Henan Province

Youth Talent Support Program of Zhongyuan and Ministry of Water Resources in China

Open Project of the Key Laboratory for Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3