Egg Morphology and Chorionic Ultrastructure of Spotted Lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae)

Author:

Powell Jonathan M.1,Nixon Laura J.2ORCID,Lourie Austin P.3,Leskey Tracy C.2,Walse Spencer S.13ORCID

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA

2. United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, 2217 Wiltshire Rd., Kearneysville, WV 25430, USA

3. Agricultural and Environmental Chemistry Graduate Group, Department of Environmental Toxicology, University of California at Davis, 4117 Meyer Hall, Davis, CA 95616, USA

Abstract

Knowledge regarding egg morphology can aid the selection of postharvest fumigants for insect control. Accordingly, scanning electron microscopy (SEM) was used to examine eggs of spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), a pest recently invasive to the mid-Atlantic region of the United States. As the overwintering life stage of SLF, eggs are deposited on a variety of refugia, including many forestry products that can be distributed geographically via travel, commerce, and/or trade. For fumigation to control SLF, and potentially translate into a viable strategy for limiting the spread of SLF by subject pathways, the fumigant must permeate the chorion to react with biomolecules and/or disrupt cellular processes. SLF chorion was characterized by a porous network of aeropyles localized around the operculum, in cranial and caudal relation to the developing nymph, as well as an interstice between the operculum edge and the opercular rim. The confirmation of chorionic ultrastructure that allows for ready gas exchange warrants further investigation of fumigation efficacy, even for those “non-reactive” fumigants, such as phosphine and hydrogen cyanide, which must overcome the suppression of cellular processes coincident with overwintering.

Publisher

MDPI AG

Subject

Forestry

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3