Mechanical Properties and Damage Evolution of Heated Granite Subjected to Liquid Nitrogen Cooling

Author:

Zhou Chunbo,Gao FengORCID,Cai Chengzheng,Zheng Wenqi,Huo Liupeng

Abstract

To investigate the effect of liquid nitrogen on the granite failure process, the deterioration effect of liquid nitrogen on heated granite was investigated from experimental and theoretical perspectives. The mechanical properties of heated granite (25, 100, 200, 300, and 400 °C) after different cooling treatments (air cooling and liquid nitrogen cooling) were investigated by uniaxial compression tests. The damage evolution analysis was performed by a statistical damage constitutive model and the dissipation energy ratio was newly defined. The results show that there is an increase in the uniaxial compressive strength of heated granite before 200 °C, which is due to the competitive relationship between the thermal cracking and crack closure. Liquid nitrogen cooling can deteriorate the mechanical properties of heated granite in terms of strength and deformability. At 400 °C, the reduction rates of compressive strength and stiffness between air cooling and liquid nitrogen cooling reached 32.36% and 47.72%, respectively. Liquid nitrogen cooling induces greater initial thermal damage and, consequently, leads to a greater degree of total damage before the peak stress and makes rock easier to be damaged. At 400 °C, the total damage at the peak stress increased from 0.179 to 0.587 after the liquid nitrogen cooling. The difficulty of damage can be quantified by the dissipation energy ratio. In addition, the deterioration of liquid nitrogen on granite is positively related to temperature. This study confirmed the deterioration effect of liquid nitrogen and promoting effect of temperature, providing a theoretical approach to the degradation mechanism of liquid nitrogen.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3