Fatigue Detection of Air Traffic Controllers Based on Radiotelephony Communications and Self-Adaption Quantum Genetic Algorithm Optimization Ensemble Learning

Author:

Wu Nan,Sun Jingjuan

Abstract

Air traffic controller (ATC) fatigue has become a major cause of air traffic accidents. Speech-based fatigue-state detection is proposed in this paper. The speech signal is preprocessed to further extract the Mel frequency cepstrum coefficient (MFCC) from speech discourse. The machine learning method is used in fatigue detection. However, single machine learning fatigue detection methods often have low detection accuracy. To solve this problem, an ensemble learning method based on self-adaption quantum genetic algorithm (SQGA) heterogeneous learning methods is proposed. Pattern-level and feature-level resampling are used to increase the differences in the base learner’s training dataset. To enlarge the diversity of single learners, k-nearest neighbor (KNN), Bayesian network (BN), back propagation neural network (BPNN) and support vector machine (SVM) are adopted for the heterogeneous ensemble. On this basis, finally, the detection result is obtained by weighted summation. The weight of each base learner was determined by SQGA. The SQGA method combines the quantum genetic algorithm with the adaptive strategy. The adaptive strategy includes adaptive adjustment of the quantum rotation gate, adaptive generation of crossover probability and adaptive generation of mutation probability. The experiments on real civil aviation radio land–air communication show that the proposed method can obtain 98.5% detection accuracy, with a 1.2% false and 3.0% missing report rate, whereas the SVM only obtains 94.0% detection accuracy, with a 5.4% false and 9.0% missing report rate.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3