Study on Quantitative Expression of Cycling Workload

Author:

Qu ShangwenORCID,Wang RonghuaORCID,Hu Jiangbi,Yang Li

Abstract

Improper design of the geometric elements and facilities of bikeway systems could endanger cyclists’ safety and comfort, resulting in an increased risk of bicycle accidents; such accidents sometimes have severe consequences, namely casualties. The method of expression for cyclists’ safety and comfort and the question of how the correlation of these factors with bikeway characteristics—such as the design of geometry and facilities—can be quantitatively described are the key problems facing a reduction in accident risk. Cycling workload can be employed to assess cyclists’ safety and comfort. However, there has been little quantitative expression research on this topic, with no clear definition of cycling workload. The quantitative expression of cycling workload is important for developing guidance for the safe design and operational management of bikeways; this is necessary for controlling conditions that might induce overworking and discomfort among users. In this paper, the concept of cycling workload is clearly defined based on cyclists’ comfort and safety formation mechanisms. Through a literature review and a comparative analysis, it is inferred that heart rate variability (HRV) can be used as a quantitative measure and the low-frequency–high-frequency ratio (LF/HF) can be used as a physiological signal to quantify cycling workload. A subjective scale was found to effectively express cyclists’ feelings of safety and comfort, with the performance assessed according to a human factor engineering research paradigm that classified cycling status into three qualitative levels—comfortable; a little stressful; and stressful. In order to form various cycling workload states and to obtain the relationship between LF/HF data and various bikeway characteristics, we designed a field cycling experiment. This was conducted by 24 participants who wore a physiological measuring apparatus under three different bikeway characteristic scenario types including variations in cycling width, direction, and bikeway edges at four cycling speeds in the 10–25 km/h range. Statistical analysis was used to address the collected LF/HF values and the subjective scale results, and a quantitative model for assessing cycling workload was established. By adopting a classification and regression tree (CART) algorithm as a data-mining method, the classification threshold values (ΔHRV) of three cycling workload levels were obtained: 19 indicated a level between comfortable and a little stressful; and 79 indicated a level between a little stressful and stressful.

Funder

the scientific research project of Zhaotong Dayong Expressway Investment & Development Co., Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3