Al-Fe-Ni Metallic Glasses via Mechanical Alloying and Its Consolidation

Author:

Binh Do Nam,Oanh Nguyen Thi HoangORCID,Viet Nguyen HoangORCID

Abstract

In this paper, the influence of mechanical milling on the microstructural evolution and magnetic properties of Al82Fe14Ni4 alloys prepared by mechanical alloying is investigated. The elemental powder mixture was processed under argon gas at 250 rpm and 350 rpm using a planetary ball mill. The powder particles experienced severe deformation, fragmentation and mutually cold-welding during the collisions of the balls. The diffraction peaks of the Al, Fe and Ni phases gradually disappeared during the milling process, and a halo peak corresponding to the amorphous phase formed. The amorphization of powders milled at 250 rpm was slower than that of 350 rpm. These alloys achieved a fully amorphous structure after milling for 60 h. The amorphous powder alloy milled at 350 rpm exhibited higher thermal stability compared with that of an alloy milled at 250 rpm. The saturation magnetization and coercive of the milled Al82Fe14Ni4 alloy powder were decreased following the formation of a para-magnetic amorphous phase. The highest compressive strength, about 710 MPa, was obtained for the Al82Fe14Ni4 alloy sintered at 600 °C by SPS.

Funder

Ministry of Industry and Trade of the Socialist Republic of Vietnam

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3