Detection of Groundwater Pathways to Monitor Their Level Rise in Osirion at Abydos Archaeological Site for Reducing Deterioration Hazards, Sohag, Egypt Using Electrical Resistivity Tomography Technique

Author:

Abudeif Abdelbaset M.ORCID,Abdel Aal Gamal Z.,Masoud Ahmed M.ORCID,Mohammed Mohammed A.ORCID

Abstract

Climatic changes because of groundwater levels rising near the archaeological sites became a fundamental issue in Egypt. The problem will affect the deterioration of the stone foundations of the temples and any archaeological features, which will affect their deformation, changing their features, and their archaeological and architectural importance. Osirion in Abydos archaeological place, west of Sohag Governorate, undergoes this problem where the level of ground water increases west of this site in the spring season. Solving this problem will help to preserve the antiques at the Abydos site and, in particular, the Osirion and its surrounding area. It is important to understand the hydrostratigraphic conditions of the Abydos site and its surroundings. The main objectives of the work are: (1) characterizing the subsurface succession and lithology; (2) identifying the sources responsible for the groundwater level rising near the Osirion, and groundwater assessment distribution and water table depth; and (3) evaluating the subsurface location and geometry of any paleochannels that may represent conduits for groundwater flow pathways to join the water to the studied site. All this information will aid the officials to decide and make future solutions to solve these problems. To achieve these goals, the authors implemented an advanced geophysical technique, namely electrical resistivity tomography (ERT) investigations in conjunction with the existing boreholes data. The main outcomes of this work are 2D and 3D representations of the resistivity distributions, which reflect a full picture about the subsurface engineering layers, including details of the lithology of the study site. The subsurface succession includes four geoelectrical zones that were recognized. The water table level in the study site varies from 5 m to 14 m as confirmed from all the ERT profiles together with the available borehole data. A three-dimensional visual representation of the water-bearing muddy sand formation shows the presence of a potential channel in the north-east direction and its location, which is responsible for delivering the groundwater from the Nile River to the Osirion site. This result is in consistent with archaeological studies conducted in the Osirion site, where there are ancient archaeological text and drawings on the temple walls and columns. By defining the direction of the groundwater pathways, the authors recommend the decision-makers to take the engineering precautions to try to prevent the groundwater from reaching the important archaeological sites by establishing the dams and partitions. In addition, they should monitor and control the groundwater level changes around the archaeological foundations by implementing all the necessary measurements to prevent the soil subsidence and foundation collapse, and establishing a dewatering system network.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Water logging problems in Egypt’s Deserts: Case study Abu Mena archaeological site using geospatial techniques

2. Hydrological and archaeological studies to detect the deterioration of Edfu temple in Upper Egypt due to environmental changes during the last five decades

3. Assessment of Some Heavy Metals in Groundwater: Case Study Around an Archaeological Site, Abydos, Sohag, Egypt

4. Investigation of seepage through embankment dam using 3d investigation of seepage through embankmemt dam in Makkah, KSA using 3d electrical resistivity tomography and 3d ground penetrating radar imaging;Morelli;Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems,2017

5. Groundwater level-rise monitoring and recharge determination at an old archaeological site: Abydos, Sohag, Egypt;Abdel Moneim;Proceedings of the Eighth International Conference on the Geology of Africa, Assiut University,e IV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3