Bridge Node Detection between Communities Based on GNN

Author:

Luo Hairu,Jia PengORCID,Zhou Anmin,Liu Yuying,He Ziheng

Abstract

In a complex network, some nodes are relatively concentrated in topological structure, thus forming a relatively independent node group, which we call a community. Usually, there are multiple communities on a network, and these communities are interconnected and exchange information with each other. A node that plays an important role in the process of information exchange between communities is called an inter-community bridge node. Traditional methods of defining and detecting bridge nodes mostly quantify the bridging effect of nodes by collecting local structural information of nodes and defining index operations. However, on the one hand, it is often difficult to capture the deep topological information in complex networks based on a single indicator, resulting in inaccurate evaluation results; on the other hand, for networks without community structure, such methods may rely on community partitioning algorithms, which require significant computing power. In this paper, considering the multi-dimensional attributes and structural characteristics of nodes, a deep learning-based framework named BND is designed to quickly and accurately detect bridge nodes. Considering that the bridging function of nodes between communities is abstract and complex, and may be related to the multi-dimensional information of nodes, we construct an attribute graph on the basis of the original graph according to the features of the five dimensions of the node to meet our needs for extracting bridging-related attributes. In the deep learning model, we overlay graph neural network layers to process the input attribute graph and add fully connected layers to improve the final classification effect of the model. Graph neural network algorithms including GCN, GAT, and GraphSAGE are compatible with our proposed framework. To the best of our knowledge, our work is the first application of graph neural network techniques in the field of bridge node detection. Experiments show that our designed framework can effectively capture network topology information and accurately detect bridge nodes in the network. In the overall model effect evaluation results based on indicators such as Accuracy and F1 score, our proposed graph neural network model is generally better than baseline methods. In the best case, our model has an Accuracy of 0.9050 and an F1 score of 0.8728.

Funder

Key Research and Development Program of Sichuan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3