Coordinated Control after Grasping the Space Targets Using Controllable Damping Mechanism

Author:

Chang RuiORCID,Jia Qingxuan,Chu Ming,Zhang Xiaodong

Abstract

Compliant capture of the space non-cooperative targets is a key technology in on-orbit services. A great challenge is that the multi-dimensional contact force generated by the tumbling space target can destabilize the spacecraft-manipulator system (SMS), which may eventually cause failure of the capture task. A full-dimensional controllable damping mechanism (FDCDM) with gyroscopic structure is introduced into the joint of the SMS to buffer the multi-dimensional contact forces during capture. The six-dimensional damping force outputs by the FDCDM can be equivalent to the actuator outputs in the end joint, which could form a coordinated control system with the torque of base flywheel and active joints. The whole-body dynamic model of SMS with FDCDM is established using the Kane method. Furthermore, a backstepping non-singular sliding mode control is proposed to optimize the momentum distribution and impact absorption. The characteristics of collision process for the above SMS-FDCDM system is analyzed in the ADAMS workspace, and the experiments performed in MATLAB demonstrate that the full-dimensional damping mechanism and coordinated control can greatly reduce the vibration caused by the impact force, and the attitude of SMS is quickly stabilized after capture, which proves the feasibility of its application in non-cooperative target capturing tasks.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3