Research on Sound Imagery of Electric Shavers Based on Kansei Engineering and Multiple Artificial Neural Networks

Author:

Lin Zhe-Hui,Woo Jeng-ChungORCID,Luo Feng,Chen Yu-Tong

Abstract

The electric shaver market in China reach 26.3 billion RMB by 2021. Nowadays, in addition to functional satisfaction, consumers are increasingly focused on the emotional imagery conveyed by products with multiple-senses, and electric shavers are not only shaped to attract consumers, but their product sound also conveys a unique emotional imagery. Based on Kansei engineering and artificial neural networks, this research explored the emotional imagery conveyed by the sound of electric shavers. First, we collected a wide sample of electric shavers in the market (230 types) and obtained the consumers’ perceptual vocabulary (85,710 items) through a web crawler. The multidimensional scaling method and cluster analysis were used to condense the sample into 34 representative samples and 3 groups of representative Kansei words; then, the semantic differential method was used to assess the users’ emotional evaluation values. The sound design elements (including item and category) of the samples were collected and classified using Heardrec Devices and ArtemiS 13.6 software, and, finally, multiple linear and non-linear correlation prediction models (four types) between the sound design elements of the electric shaver and the users’ emotional evaluation values were established by the quantification theory type I, general regression neural network, back propagation neural network, and genetic algorithm-based BPNN. The models were validated by paired-sample t-test, and all of them had good reliability, among which the genetic algorithm-based BPNN had the best accuracy. In this research, four linear and non-linear Kansei prediction models were constructed. The aim was to apply higher accuracy prediction models to the prediction of electric shaver sound imagery, while giving specific and accurate sound design metrics and references.

Funder

Fujian University of Technology

Design Innovation Research Center of Humanities and Social Sciences Research Base of Colleges and Universities in Fujian Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3