Elasto-Plastic Short Exoskeleton to Improve the Dynamic and Seismic Performance of Frame Structures

Author:

Di Egidio AngeloORCID,Pagliaro Stefano,Contento AlessandroORCID

Abstract

The coupling with external mechanical systems such as oscillating masses working as tuned mass dampers, dynamic mass absorbers, elasto-plastic dampers, and rigid walls is an effective method to reduce the displacements and drifts of structures under external loads. An alternative method is provided by the coupling of the structure with an independent, auxiliary elasto-plastic system. This paper investigates the dynamic and seismic behaviour of a structure rigidly coupled with an auxiliary yielding mechanical system under harmonic and seismic ground excitation. A two-degree-of-freedom model is used to describe the dynamic and seismic behaviour of the main structure rigidly coupled to the yielding system, which is described by a one-degree-of-freedom model. The auxiliary system has an elasto-plastic constitutive behaviour that is modelled by a Bouc-Wen model. The equations of motion of the coupled system are obtained by a direct approach. The coupling with the yielding system is considered beneficial if the displacements of the coupled system reduce with respect to those of the stand-alone frame structure. An extensive parametric analysis is performed to point out the role of the mechanical parameters that describe the elasto-plastic constitutive behaviour of the auxiliary system. Results reveal that in large ranges of the parameters’ values, the coupling with the elasto-plastic system improves the performance of the frame structure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3