MCF-Net: Fusion Network of Facial and Scene Features for Expression Recognition in the Wild

Author:

Xu HuiORCID,Kong Jun,Kong Xiangqin,Li Juan,Wang Jianzhong

Abstract

Nowadays, the facial expression recognition (FER) task has transitioned from a laboratory-controlled scenario to in-the-wild conditions. However, recognizing facial expressions in the wild is challenging due to factors such as variant backgrounds, low-quality facial images, and the subjectiveness of annotators. Therefore, deep neural networks have increasingly been leveraged to learn discriminative representations for FER. In this work, we propose the Multi-cues Fusion Net (MCF-Net), a novel deep learning model with a two-stream structure for FER. Our model first proposes a two-stream coding network to extract face and scene representations. Then, an adaptive fusion module is employed to fuse the two different representations for final recognition. In the face coding stream, a Sparse Mask Attention Learning (SMAL) module is utilized to adaptively generate the corresponding sparse face mask according to the input image. Meanwhile, we employ a Multi-scale Attention (MSA) module for extracting fine-grained feature subsets, which can obtain richer multi-scale interaction information. In the scene coding stream, a Relational Attention (RA) module is applied to construct the hidden relationship between the face and contextual features of non-facial regions by capturing the pairwise similarity. In order to verify the effectiveness and accuracy of our model, a large number of experiments are carried out on two public large-scale static facial expression image datasets, CAER-S and NCAER-S. By comparing the performance of our MCF-Net with other methods, the proposed model achieves superior results on two in-the-wild FER benchmarks: CAER-S with an accuracy of 81.82% and NCAER-S with an accuracy of 45.59%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Communication without Words;Mehrabian;Psychol. Today,1968

2. Recognizing action units for facial expression analysis

3. Facial expression recognition based on Local Binary Patterns: A comprehensive study

4. Graph-preserving sparse nonnegative matrix factorization with application to facial ex-pression recognition;Zhi;IEEE Trans. Syst. Man Cybern.,2010

5. Depth Camera-Based Facial Expression Recognition System Using Multilayer Scheme

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3