A Review of Flow Control for Gust Load Alleviation

Author:

Li Yonghong,Qin Ning

Abstract

Effective control of aerodynamic loads, such as maneuvering load and gust load, allows for reduced structural weight and therefore greater aerodynamic efficiency. After a basic introduction in the types of gusts and the current gust load control strategies for aircraft, we outline the conventional gust load alleviation techniques using trailing-edge flaps and spoilers. As these devices also function as high-lift devices or inflight speed brakes, they are often too heavy for high-frequency activations such as control surfaces. Non-conventional active control devices via fluidic actuators have attracted some attention recently from researchers to explore more effective gust load alleviation techniques against traditional flaps for future aircraft design. Research progress of flow control using fluidic actuators, including surface jet blowing and circulation control (CC) for gust load alleviation, is reviewed in detail here. Their load control capabilities in terms of lift force modulations are outlined and compared. Also reviewed are the flow control performances of these fluidic actuators under gust conditions. Experiments and numerical efforts indicated that both CC and surface jet blowing demonstrate fast response characteristics, capable for timely adaptive gust load controls.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Simulations of Vertical Discrete Gusts Driven by Trailing Edge Blowing;International Journal of Aerospace Engineering;2023-12-20

2. Singular perturbation decomposition-based ride quality control of elastic aircraft;Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University;2023-10

3. Flow Control, Active and Passive Applications;Applied Sciences;2023-08-14

4. Active Gust Alleviation on a High Aspect Ratio Wing Based on High Fidelity CFD Simulations;AIAA AVIATION 2023 Forum;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3