Dual Band Antenna Design and Prediction of Resonance Frequency Using Machine Learning Approaches

Author:

Haque Md. AshrafulORCID,Sarker Nayan,Sawaran Singh Narinderjit Singh,Rahman Md AfzalurORCID,Hasan Md. Nahid,Islam Mirajul,Zakariya Mohd Azman,Paul Liton ChandraORCID,Sharker Adiba Haque,Abro Ghulam E. Mustafa,Hannan Md,Pk Ripon

Abstract

An inset fed-microstrip patch antenna (MPA) with a partial ground structure is constructed and evaluated in this paper. This article covers how to evaluate the performance of the designed antenna by using a combination of simulation, measurement, creation of the RLC equivalent circuit model, and the implementation of machine learning approaches. The MPA’s measured frequency range is 7.9–14.6 GHz, while its simulated frequency range is 8.35–14.25 GHz in CST microwave studio (CST MWS) 2018. The measured and simulated bandwidths are 6.7 GHz and 5.9 GHz, respectively. The antenna substrate is composed of FR-4 Epoxy, which has a dielectric constant of 4.4 and a loss tangent of 0.02. The equivalent model of the proposed MPA is developed by using an advanced design system (ADS) to compare the resonance frequencies obtained by using CST. In addition, the measured return loss of the prototype is compared with the simulated return loss observed by using CST and ADS. At the end, 86 data samples are gathered through the simulation by using CST MWS, and seven machine learning (ML) approaches, such as convolutional neural network (CNN), linear regression (LR), random forest regression (RFR), decision tree regression (DTR), lasso regression, ridge regression, and extreme gradient boosting (XGB) regression, are applied to estimate the resonant frequency of the patch antenna. The performance of the seven ML models is evaluated based on mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and variance score. Among the seven ML models, the prediction result of DTR (MSE = 0.71%, MAE = 5.63%, RMSE = 8.42%, and var score = 99.68%) is superior to other ML models. In conclusion, the proposed antenna is a strong contender for operating at the entire X-band and lower portion of the Ku-band frequencies, as evidenced by the simulation results through CST and ADS, it measured and predicted results using machine learning approaches.

Funder

INTI International University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. A Wideband Rectangular Microstrip Patch Antenna with Partial Ground Plane for 5G Applications;Paul;Proceedings of the 2021 Joint 10th International Conference on Informatics, Electronics & Vision (ICIEV) and 2021 5th International Conference on Imaging, Vision & Pattern Recognition (icIVPR),2021

2. Performance Improvement of S-shaped for Wireless Communication;Kannadhasan,2022

3. Design Simulation and Analysis of a Dual Band Microstrip Patch Antenna for GPS and WLAN Applications

4. A Small All-Corners-Truncated Circularly Polarized Microstrip Patch Antenna on Textile Substrate for Wearable Passive UHF RFID Tags

5. Investigation of the dependency of an inset feed rectangular patch antenna parameters with the variation of notch width for WiMax applications;Paul;Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA),2018

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3