Design and Experiment of Black Soldier Fly Frass Mixture Separation through a Cylinder Sieve with Different Rotation Speeds

Author:

Peng Caiwang,Zhou Ting,Song Shisheng,Sun Songlin,Yin Yulong,Xu Daojun

Abstract

A differential separation trommel screener was developed to solve the problems of the impurity content in insects and the high rate of insect impurities in the separation of black soldier fly (BSF) sand mixture. Moreover, the mechanical and physical properties of the BSF sand and its bonding contact model were examined. With the rotational speed of the trommel and the spikes and the inclination of the trommel as the experimental factors, their motion characteristics were analyzed and their value ranges were determined. In addition, the impurity content in the insects and the rate of insect impurities were selected as the test indicators. The Box–Behnken test was performed, the response surface regression model was built, and the parameters were optimized. The results indicated that the respective test factors, the impurity content and the insect rate, followed the following order of significance: the trommel rotation speed, spike teeth rotation speed, and trommel screener inclination. At the trommel rotation speed of 47.37 r/min, the speed of the spike teeth reached 24.16 r/min, the inclination angle of the trommel was 5°, the impurity content was 6.0%, and the insect rate reached 1.2%. The results of the bench test indicated that the average impurity content was 5.87% and the average insect rate was 1.20%. The results of this study provide a reference for the improvement and optimization of the separation structure of the BSF sand mixture.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3