A Study on the Field Applicability of Intermittent Irrigation in Protected Cultivation Using an Automatic Irrigation System

Author:

Kang Sang-HyeonORCID,Kim Youngjin,Lee Sangbong,Kim Heetae,Kim Minyoung

Abstract

The demand for efficient water use and automatic systems has been increasing due to the frequent drought damage to crops as a result of climate change, the shortage of water resources in rural areas, and the aging of farmers. The existing automatic irrigation systems reduce the amount of labor required for irrigation and maintain soil moisture. However, the irrigation threshold criteria are user-determined as opposed to being automated according to input objectives such as improving crop productivity and saving water. In this study, an algorithm that could automatically determine suitable soil moisture according to a database and an automatic irrigation system with intermittent irrigation for efficient water use were developed. An experiment was then conducted on the productivity of crops for protected cultivation according to the application of the system. As the frequency domain reflectometry (FDR) sensor used in this system measured the volumetric water content of the soil, the soil moisture tension corresponding with the set value was converted into the volumetric water content using a regression equation. The process of intermittent irrigation was defined by using the moisture movement modeling of Hydrus 2D to reduce water loss on the soil surface and allow moisture to penetrate the soil unobstructed. An experimental field of a tomato farm was divided into empirical manual and controlled automatic irrigation plots. A total of 97.3% of the soil moisture values in the −33 kPa-controlled automatic irrigation plot and 96.6% of the soil moisture values in the −25 kPa-controlled automatic irrigation plot were within each set range during the first cropping season. During the second cropping season, a total of 94.8% of the soil moisture values in the −33 kPa-controlled automatic irrigation plot was within the set range. Compared with the empirical manual irrigation plot, the water productivity in the first cropping season was 113.9% in the −33 kPa-controlled automatic irrigation plot and 106.3% in the −25 kPa-controlled automatic irrigation plot. In the second cropping season, the water productivity was 117.3% in the −33 kPa-controlled automatic irrigation plot. Therefore, an automatic irrigation system applied with intermittent irrigation could be critical to increasing agricultural production and improving water-use efficiency.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3