Abstract
Protein-based studies contribute significantly to gathering functional information about biological systems; therefore, the protein–protein interaction detection task is one of the most researched topics in the biomedical literature. To this end, many state-of-the-art systems using syntactic tree kernels (TK) and deep learning have been developed. However, these models are computationally complex and have limited learning interpretability. In this paper, we introduce a linguistic-pattern-representation-based Gradient-Tree Boosting model, i.e., LpGBoost. It uses linguistic patterns to optimize and generate semantically relevant representation vectors for learning over the gradient-tree boosting. The patterns are learned via unsupervised modeling by clustering invariant semantic features. These linguistic representations are semi-interpretable with rich semantic knowledge, and owing to their shallow representation, they are also computationally less expensive. Our experiments with six protein–protein interaction (PPI) corpora demonstrate that LpGBoost outperforms the SOTA tree-kernel models, as well as the CNN-based interaction detection studies for BioInfer and AIMed corpora.
Funder
National Science and Technology Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science