Hierarchical Segmentation Method for Generating Road Intersections from Crowdsourced Trajectory Data

Author:

Zhang YunfeiORCID,Tang Gengbiao,Fang Xiaoliang,Chen Tao,Zhou Fangbin,Luo Yabo

Abstract

Maintaining the data freshness and completeness of road intersection information is the key task of urban road map production and updating. Compared to professional surveying methods, crowdsourced trajectory data provide a low-cost, wide-coverage and real-time data resource for road map construction. However, there may exist the problems of spatio-temporal heterogeneity and uneven density distribution in crowdsourced trajectory data. Hence, in light of road hierarchies, the paper proposes a hierarchical segmentation method to generate road intersections from crowdsourced trajectories. The proposed method firstly implements an adaptive density homogenization processing on raw trajectory data in order to decrease the uneven density discrepancy. Then, a hierarchical segmentation strategy is developed to extract multi-level road intersection elements from coarse scale to fine scale. Finally, the structural models of road intersections are delineated by an iterative piecewise fitting method. Experimental results show that the proposed method can accurately and completely extract road intersections of different shapes and scales, with an accuracy of about 87–90%. Particularly, the precision and recall of road intersection detection are obviously increased by about 7% and 20% by adaptive density homogenization, indicating the advantages of dealing with uneven trajectory data.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Road Intersections from Crowdsourced Trajectory Data Based on Improved YOLOv5 Model;ISPRS International Journal of Geo-Information;2024-05-28

2. Orientation-Aware Multi-Modal Learning for Road Intersection Identification and Mapping;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3