The Effect of Ultraviolet Aging Duration on the Rheological Properties of Sasobit/SBS/Nano-TiO2-Modified Asphalt Binder

Author:

Yang Shengfeng,Yan Kezhen,Liu Wenyao

Abstract

In recent years, nanoparticles have been introduced into warm-mix-modified asphalt to improve asphalt performance after sustaining ultraviolet (UV) aging, yet the evaluation of aging performance is often a descriptive characterization of rheological properties. This study extends rheological characterization with viscoelastic mechanical modeling to evaluate resistance to UV aging using Sasobit and SBS compound-modified binder blended with nano-titanium dioxide (TiO2). The extended method comprises characterizations using several rheological properties and a viscoelastic mechanical model, named the 2S2P1D model, on modified asphalt after 3 days, 6 days and 9 days of ultraviolet (UV) aging. The rheological properties of the UV-aged binders were tested at high and medium temperatures in terms of viscosity, complex modulus, phase angle and fatigue factor. Rheological test results showed that nanoparticles generally had no apparent effect on the complex modulus of aged binders regardless of UV aging times. However, the aged binder with nanoparticles showed better fatigue resistance than aged binders without nanoparticles after 3 days of UV aging. As an extension, the black space diagram and 2S2P1D model were used to investigate the viscoelastic properties of these aged binders. The k and h values, as important model parameters, were almost the same and less than one for all UV-aged binders. All investigated aged asphalt binders showed characteristics of a viscoelastic solid in terms of the master curves of the complex modulus and phase angle, and the master curves of the phase angle for all UV-aged binders did not meet the time–temperature equivalence. Moreover, these observations from the 2S2P1D model revealed that aging durations did not affect the viscoelastic mechanical characteristics of warm mix asphalt in this study. The method adopted in this study may promote a comprehensive evaluation of asphalt properties after UV aging, especially considering the viscoelastic mechanical performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3