A Hybrid Algorithm Based on Simplified Swarm Optimization for Multi-Objective Optimizing on Combined Cooling, Heating and Power System

Author:

Yeh Wei-ChangORCID,Zhu WenboORCID,Peng Yi-FanORCID,Huang Chia-LingORCID

Abstract

Energy demand is rising sharply due to the technological development and progress of modern times. Neverthless, traditional thermal power generation has several diadvantages including its low energy usage and emitting a lot of polluting gases, resulting in the energy depletion crisis and the increasingly serious greenhouse effect. In response to environmental issues and energy depletion, the Combined Cooling, Heating and Power system (CCHP) combined with the power-generation system of renewable energy, which this work studied, has the advantages of high energy usage and low environmental pollution compared with traditional thermal power generation, and has been gradually promoted in recent years. This system needs to cooperate with the instability of renewable energy and the dispatch of the energy-saving system; the optimization of the system has been researched recently for this purpose. This study took Xikou village, Lieyu township, Kinmen county, Taiwan as the experimental region to solve the optimization problem of CCHP combined with renewable energy and aimed to optimize the multi-objective system including minimizing the operation cost, minimizing the carbon emissions, and maximizing the energy utilization rate. This study converted the original multi-objective optimization problem into a single-objective optimization problem by using the Technique for Order Preference by Similarity to and Ideal Solution (TOPSIS) approach. In addition, a hybrid of the simplified swarm optimization (SSO) and differential evolution (DE) algorithm, called SSO-DE, was proposed in this research to solve the studied problem. SSO-DE is based on SSO as the core of the algorithm and is combined with DE as the local search strategy. The contributions and innovations of the manuscript are clarified as follows: 1. a larger scale of CCHP was studied; 2. the parallel connection of the mains, allowing the exchange of power with the main grid, was considered; 3. the TOPSIS was adopted in this study to convert the original multi-objective optimization problem into a single-objective optimization problem; and 4. the hybrid of the DE algorithm with the improved SSO algorithm was adopted to improve the efficiency of the solution. The proposed SSO-DE in this study has an excellent ability to solve the optimization problem of CCHP combined with renewable energy according to the Friedman test of experimental results obtained by the proposed SSO-DE compared with POS-DE, iSSO-DE, and ABC-DE. In addition, SSO-DE had the lowest running time compared with POS-DE, iSSO-DE, and ABC-DE in all experiments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3