Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning

Author:

Yu JinyeongORCID,Oh Seung Jun,Baek SeunghunORCID,Kim Jonghyun,Lee TaekyungORCID

Abstract

The multi-pass caliber rolling (MPCR) of Mg alloy has attracted much attention due to its engineering and manufacturing advantages. The MPCR process induces a unique microhardness variation, which has only been predicted using a finite element analysis thus far. This study employed machine learning as an alternative method of microhardness prediction for the first time. For this purpose, two machine-learning approaches were evaluated: the artificial neural network (ANN) approach and that aided by generative adversarial networks (GANs). These approaches predicted microhardness variation in the most difficult case (i.e., after the final-pass MPCR deformation). The machine-learning approaches provided a good prediction for the center area of the cross-section, because the prediction was relatively easy due to the small deviation in microhardness. In contrast, the ANN failed to anticipate the shifted hardness variation in the side sections, leading to a low predictability. Such an issue was effectively improved by integrating the GAN with the ANN.

Funder

Pusan National University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3