Suggestion of Practical Application of Discrete Element Method for Long-Term Wear of Metallic Materials

Author:

Lee Sung-Je,Lee Jang-HyunORCID,Hwang Se-Yun

Abstract

This study presents a simulation procedure for the wear of metallic materials exposed to long-term cumulative contact forces and introduces a numerical analysis procedure using the discrete element method (DEM) to predict the wear damage. Since the DEM can calculate the motion and contact load of each particle and the interaction between particles for each dynamic collision of particles, it was possible to analyze the motion of the particles causing metal wear. A method to reflect particle size, material properties, and long-term cumulative friction distance required by the DEM was proposed so that the collision and friction load between particles can be predicted practically. Considering the feature of wear suggested by Archard, it was shown that the wear amount can be predicted efficiently by converting the long-term load into an equivalent material constant. In addition, it was suggested that it is reasonable to determine the size of the particles in consideration of the size of the surface mesh of the metal surface. The accuracy of the analysis results obtained using the procedure proposed in this study was compared with that of the wear test results of metal material specimens presented by former studies. The numerical analysis was also performed in the reference study, but inaccurate results were derived compared to the analysis results. The reason for the inaccuracy of the numerical model performed in the previous study was found to be environmental factors that cannot be considered in a numerical analysis. In this study, it was determined that it was because the behavior of particles and the load transferred to the specimen were not well simulated, which remains a problem for future research. As a result, it was confirmed that it is possible to compute a worn shape similar to the measured shape of experiments. Thereafter, the change in the contact load predicted by simulation is discussed in terms of wear shape and cross-sectional area loss ratio.

Funder

Inha University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Global energy consumption due to friction and wear in the mining industry

2. Physics of ice friction

3. The kinetic friction of ice;Evans;Proc. R. Soc. A Math. Phys. Sci.,1976

4. Coefficient of Friction between Ice and Some Construction Materials, Plastics and Coatings;Oksanen,1980

5. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3