Rethinking Learnable Proposals for Graphical Object Detection in Scanned Document Images

Author:

Sinha SankalpORCID,Hashmi Khurram AzeemORCID,Pagani Alain,Liwicki MarcusORCID,Stricker Didier,Afzal Muhammad ZeshanORCID

Abstract

In the age of deep learning, researchers have looked at domain adaptation under the pre-training and fine-tuning paradigm to leverage the gains in the natural image domain. These backbones and subsequent networks are designed for object detection in the natural image domain. They do not consider some of the critical characteristics of document images. Document images are sparse in contextual information, and the graphical page objects are logically clustered. This paper investigates the effectiveness of deep and robust backbones in the document image domain. Further, it explores the idea of learnable object proposals through Sparse R-CNN. This paper shows that simple domain adaptation of top-performing object detectors to the document image domain does not lead to better results. Furthermore, empirically showing that detectors based on dense object priors like Faster R-CNN, Mask R-CNN, and Cascade Mask R-CNN are perhaps not best suited for graphical page object detection. Detectors that reduce the number of object candidates while making them learnable are a step towards a better approach. We formulate and evaluate the Sparse R-CNN (SR-CNN) model on the IIIT-AR-13k, PubLayNet, and DocBank datasets and hope to inspire a rethinking of object proposals in the domain of graphical page object detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east;Gantz;IDC iView IDC Anal. Future,2012

2. A Survey of Graphical Page Object Detection with Deep Neural Networks

3. Page object detection from pdf document images by deep structured prediction and supervised clustering;Li;Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR),2018

4. CNN based page object detection in document images;Yi;Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR),2017

5. ICDAR2017 competition on page object detection;Gao;Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR),2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3