Lab-on-Chip Culturing System for Fungi—Towards Nanosatellite Missions

Author:

Krakos (Podwin) AgnieszkaORCID,Śniadek Patrycja,Jurga Marta,Białas Marcin,Kaczmarek-Pieńczewska AgataORCID,Matkowski Krzysztof,Walczak Rafał,Dziuban Jan

Abstract

In this paper, a lab-on-chip system dedicated to fungi cultivation in Earth’s gravity and simulated microgravity, being a solution that could be used in future nanosatellite missions, is shown. For the first time, a fully glass lab-on-chip structure enabling the proper environment for cultivation of fungi species—Fusarium culmorum—is presented. Apart from the biological validation of the fungi cultures with the use of the lab-on-chip system, tests were carried out under induced microgravity utilising a Rotary Wall Vessel. Correct functioning of the lab-on-chip system was obtained, enabling the growth of fungi spores both in ground and in simulated microgravity conditions. Interestingly, culturing tests have shown that microgravity stimulates the growth of fungi notably, compared to the ground-based experimentation performed simultaneously. The findings of this study can provide substantial new knowledge on microscopic fungi cultivation in lab-on-chip devices, other soil organisms, as well as a potential behavior of these species in microgravity conditions. Culturing system shown in this work can help mycologists to provide better understanding of microscopic fungi nature and their development mechanisms at a single spore level. This opens the way towards regular usage of microfluidic tools in agriculture and horticulture fields and more importantly, in future research on microscopic fungi in space, e.g., as a part of nanosatellite missions.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3